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[1] We consider the correlation between clouds and sulfate in order to assess the relative
importance of cloud aqueous-phase production of sulfate, precipatation scavenging of
sulfate, and inhibition of gas-phase sulfate production beneath clouds. Statistical analysis
of observed daily cloud cover and sulfate surface concentrations in Europe and North
America indicates a significant negative correlation between clouds and sulfate. This
implies that clouds remove sulfate via precipitation scavenging and/or inhibit sulfate gas-
phase production more than they enhance sulfate concentration through aqueous-phase
production. Persistent sulfate/cloud anticorrelations at long timescales (8–64 days)
apparently result from large-scale dynamical influences on clouds, which in turn impact
sulfate. A statistical analysis of output from the general circulation model (GCM) of the
Goddard Institute for Space Studies (GISS) shows weak coherence between sulfate and
cloud cover. However, there is stronger anticorrelation between the model’s sulfate
generated by gas-phase oxidation and cloud cover. Sulfate/cloud anticorrelation in the
GCM strengthens if we extinguish gas-phase sulfate production beneath clouds, as should
happen since the oxidant OH is photochemically generated. However the only way to
achieve strong anticorrelation between total sulfate and clouds is by correcting our
treatment of aqueous-phase sulfate production. Our model, like many other global tracer
models, released dissolved species (including sulfate) from clouds after each cloud
time step rather than making release contingent upon cloud evaporation. After correcting
this in the GISS model, more sulfate is rained out, the sulfate burden produced via the
aqueous phase decreases to half its former amount, and the total sulfate burden is
25% lower. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles

(0345, 4801); 0320 Atmospheric Composition and Structure: Cloud physics and chemistry; 0365 Atmospheric

Composition and Structure: Troposphere—composition and chemistry; 0368 Atmospheric Composition and

Structure: Troposphere—constituent transport and chemistry; KEYWORDS: aerosol
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1. Introduction

[2] The impact of sulfate aerosols on climate may be
significant, but is subject to considerable uncertainty. The
most straightforward impact is the ‘‘direct’’ effect (scattering
of incoming solar radiation back to space). In terms of
anthropogenic radiative forcing the direct effect may be
�0.2 to �0.9 W m�2 [Penner et al., 2001]. Potentially more
significant (but much more uncertain) are the sulfate ‘‘indi-
rect’’ effects on cloud radiative properties and lifetime, the
first and second indirect effects, respectively. The first

indirect effect is estimated to lie between 0 and �2 W m�2

[Penner et al., 2001], but is highly uncertain; and the second
indirect is too uncertain to assign a meaningful forcing
range. Clouds are involved in both the production and
removal of sulfate aerosols. Sulfate is almost entirely derived
from oxidation of SO2 either in the gas phase or aqueous
phase (i.e., within cloud droplets). Gas-phase production
will be suppressed beneath clouds due to reduced oxidant
OH amounts. Sulfate, being highly soluble, is removed
from the atmosphere mostly by precipitation scavenging,
and to a lesser degree by dry deposition.
[3] Cloud processes generate, scavenge and are impacted

by sulfate, but the overall relationship between them is poorly
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known. Do cloudy conditions result in heavy sulfate produc-
tion, or do clouds effectively clean the atmosphere of these
aerosols? Do clouds inhibit gas-phase sulfate production
significantly? If a single process dominates, we should
observe strong correlation between clouds and sulfate, and
a diagnostic phase relationship. If in-cloud production dom-
inates, sulfate (or its rate-of-change) would be positively
correlated with clouds. Negative correlation would result
from scavenging and also from gas-phase production sup-
pression beneath clouds.
[4] Previous studies using global sulfate models indicated

that (model) sulfate generation occurs primarily in clouds.
Tables summarizing these studies [see, e.g., Koch et al.,
1999; Chin et al., 2000] suggest that most of the sulfate is
produced in the aqueous phase (model estimates range from
64% to 89%). Most removal also occurs by wet deposition,
typically around 80% (although the budgets are difficult to
compare because some models identify rained-out sulfur as
sulfate and some as SO2), with the rest removed by dry
deposition. Thus it appears that clouds play a highly
significant role in both the generation and removal of sulfate
aerosols. In the work of Koch et al. [1999], our global sulfur
model indicated a slight tendency toward positive correla-
tion between clouds and sulfate near source regions and
anticorrelation in more remote regions.
[5] Given the level of uncertainty in modeling clouds and

their interactions with the sulfur cycle, it is preferable to
observe correlations in measurements. A number of efforts
are now underway to tease out cloud/sulfate relations using
satellite observations [Schwartz et al., 2002; Lohmann and
Lesins, 2002]. These studies must confront the problem of
cloud-screening: the determination of where clouds end and
aerosol haze begins. A further difficulty is distinguishing
between sulfate and other aerosol types.
[6] Here we use a different approach to observe cloud-

sulfate relations, by making use of the extensive surface
concentration data sets that have been saved by European
and North American networks. These data provide daily

average concentrations of sulfate. To these we compare
cloud satellite products which also have daily resolution. As
we will show below, there is a strong negative correlation
between clouds and sulfate. We use these results to test and
correct our model’s sulfur simulation.

2. Observations of Cloud-Sulfate Correlations

[7] In order to seek correlation between clouds and
sulfate, we use daily average sulfate surface concentrations
in Europe from the Cooperative Program for Monitoring
and Evaluation of the Long Range Transmission of Air
Pollutants in Europe (EMEP) [e.g., Schaug et al., 1987] and
in North America from the Eulerian Model Evaluation Field
Study (EMEFS) [e.g., McNaughton and Vet, 1996]. We use
4 years of data from EMEP (1989–1992) and 1 year of data
from EMEFS (1989–1990). We choose sites that have at
least 20 days of sulfate data/month: 21 sites from EMEP
and 31 sites from EMEFS. These locations are shown in
Figure 1. We also made use of precipitation and sulfate
deposition (i.e., in rainwater) data from the 15 of the EMEP
sites that had this information (stars in Figure 1).
[8] Total cloud cover comes from the International

Satellite Cloud Climatology Project (ISCCP, version D1)
[e.g., Stubenrauch et al., 1999; Rossow and Schiffer, 1999].
The satellite observations provide cloud parameters every
3 hours which we average to make 24-hour means. We
chose to work with total cloud cover (results using cloud
optical thickness were similar). We gathered time series
with daily resolution of sulfate surface concentration and
total cloud cover above the ground-based site.
[9] General features of the data series can be discerned

from 4months’ data from one of the EMEP sites (Deuselbach

Figure 1. Map showing locations of sulfate surface
concentration and ISCCP cloud cover observations (white
circles); EMEP sites having precipitation and deposition
information are marked with stars. Grid boxes used for the
model calculations are triangles (Scandinavia), diamonds
(Europe) and inverted triangles (North America).

Figure 2. Time series of cloud cover (%), sulfate
surface concentration (mg S/m3) and sulfate deposition flux
(mg S/m2/d) at Deuselbach, Germany (49.8�N 7�E) for the
last 125 days of 1991.
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Germany, 49.8�N 7�E), shown in Figure 2. Here we see that
decreases in cloud cover typically correlate with increases in
sulfate surface concentration. Such cloud ‘‘dips’’ can persist
for extensive periods, such as from days 320–350. Peaks in
deposition flux generally cluster together in time periods with
low sulfate air concentrations. It is not uncommon for such
clusters to persist for 10–20 days. Thuswe see that the sulfate
concentration rises during relatively clear periods (when
clouds do not inhibit gas-phase production) and decreases
during cloudy, rainy periods (when precipitating clouds
scavenge sulfate and/or clouds inhibit gas-phase sulfate
production). In the next section we apply statistical
approaches to quantify such relationships in the data series.

3. Statistical Methods

[10] For estimating the correlation between cloud cover
and sulfate concentration, deposition or precipitation, we
apply time series algorithms that use Slepian wavelets [Lilly
and Park, 1995; Bear and Pavlis, 1999; Park and Mann,
2000]. We use wavelets instead of standard Fourier trans-
forms to account for possible nonstationary behavior in the

data correlations. For instance, if aqueous sulfate-produc-
tion and cloud-scavenging dominate in different time inter-
vals, a wavelet-based correlation estimate can detect
competing episodes of strong correlation that are sometimes
positive, and sometimes negative. Correlation estimates
based on the Fourier-transform tend to average behavior
over entire time series, and can appear weak if the correla-
tion phase varies with time.
[11] Slepian wavelets are designed as the counterparts of

Slepian tapers, which are used in multiple taper spectrum
analysis [Thomson, 1982; Park et al., 1987a, 1987b;
Percival and Walden, 1993]. In particular, Slepian wavelets
are derived from an optimization condition that, for a
spectrum estimate at frequency fo, minimizes spectral leak-
age outside a specified frequency interval [ fo � fw , fo + fw].
The leakage-resistance condition takes the form of an
eigenvector problem. Its solution is a sequence of wavelets
that (1) possess optimal spectral leakage properties (2) have
either odd or even parity, and (3) are mutually orthogonal.
Even and odd wavelets can be paired as real and imaginary
parts of a complex-valued wavelet, in order to constrain the
phase of a signal. Mutual orthogonality affords statistical

Figure 3. Squared coherence C2 between observed sulfate and cloud cover over Europe summed over
each season for 1989–1992. On the log-period axis, 3, 4, 5, and 6 correspond to oscillation periods of 8,
16, 32 and 64 days, respectively. We superimpose a cumulative coherence plot on the gray-scale images.
The bars indicate our ‘‘detection level’’ for stacked coherence, estimated to be at least the 98%
confidence level for nonrandomness.
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independence among wavelet transforms computed with
different wavelet pairs.
[12] We compute the phased wavelet transform of time

series of observations or GCM model output (described
below) at a collection of cycle periods Tk = 1/fk, where fk are
a set of logarithmically spaced frequencies. We use three

complex-valued Slepian tapers with time-bandwidth p = 2.5
[Lilly and Park, 1995] and compute coherence C between
time series at matching points in time and frequency. The
phase f of the coherence C translates into the time delay or
sense of correlation: f � 0� is positive correlation, f �
±180� is negative correlation. Note that the phase angle

Figure 4. Same as Figure 3 but for Scandinavia. On the log-period axis, 3, 4, 5, and 6 correspond to
oscillation periods of 8, 16, 32 and 64 days, respectively.

Figure 5. Same as Figure 3 but for North American stations, shown for 1989–1990. On the log-period
axis, 3, 4, 5, and 6 correspond to oscillation periods of 8, 16, 32 and 64 days, respectively.
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‘‘wraps around’’ every 360�, so that two values of
coherence C with phases f = 179� and f = �179� differ
by only 2�.
[13] Other phase relationships include fixed time delays

and derivative relationships. For instance, if a time series
{Xt}t=1

N is delayed 4 days relative to time series {Yt}t=1
N , the

coherence of Xt relative to Yt will have phase f = �180�
at T = 8-day cycle period, f = �90� at T = 16-day cycle
period, and f = �45� at T = 32-day cycle period.
Alternatively, if {Xt}t=1

N is correlated with the rate-of-
change, or time derivative, of {Yt}t=1

N , then the coherence
of Xt relative to Yt will have phase f = 90� over a broad
range of cycle periods. Derivative relationships have
practical applications. If clouds influence aqueous-phase
sulfate production and little else, and there is a steady
supply of SO2 to oxidize, we would expect cloud-sulfate
coherence C with f = 90�.
[14] The squared coherence C2 can be related to confi-

dence levels for nonrandomness using standard statistical
assumptions. For a correlation using 3 complex-valued
Slepian wavelets, C2 values can be compared to an F
variance ratio with 2 and 4 degrees of freedom. A stacked
coherence of time series from M stations or M GCM grid
points can be compared to the confidence limits of an F
variance ratio with 2M and 4M degrees of freedom.

[15] In any time interval of interest (e.g., month, season or
year), we plot wavelet coherence as a gray-scale intensity
versus log-period (days) and phase delay in degrees. This
scheme allows the concentration of coherence at a particular
phase or phases to be expressed visually (e.g., Figure 2). We
superimpose a plot of cumulative coherence on the gray-
scale images, in which C2( f ) is summed over phase bins in
120� intervals. We sum over restricted phase intervals,
rather than summing all phases from �180� to 180�,
because we seek to detect simple causal relationships
between clouds and atmospheric sulfate. Correlations with
highly variable phase would, practically speaking, be much
harder to interpret. We plot the cumulative coherence, as a
function of log-period, against a detection threshold that we
specify below.
[16] The ‘‘detection line’’ for cumulative coherence

C2( f ) is the nominal 99% confidence limit for nonran-
domness for the following joint probability: that the
coherent fraction of the signal is both sufficiently large
and also concentrated in a 120� phase interval. We
compute the confidence limit for the stacked coherence
of M = 10 independent time series, computed with
separate terms corresponding to whether 1, 2, 3, . . . or
10 coherence estimates lie in the same 1/3 of the phase
circle. The statistics are a hybrid of the F variance ratio

Figure 6. Squared coherence between cloud cover and sulfate deposition for Europe. On the log-period
axis, 3, 4, 5, and 6 correspond to oscillation periods of 8, 16, 32 and 64 days, respectively.
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and binomial counting probabilities, and specifies stacked-
C2 = 0.321 as the 99% confidence level for nonrandom-
ness. Because we typically stack coherences from M > 10
time series, this confidence limit is slightly conservative.
However, we plot the largest stacked coherence among a
selection of 120� phase intervals, so the actual confidence
limit of our ‘‘detection line’’ is lower than 99%. Numerical
tests suggest the C2 = 0.321 detection level represents
roughly 98% confidence for nonrandomness.

4. Observation Results

[17] We show results of coherence between cloud cover
and sulfate concentration for the aggregate of the 11 Euro-
pean stations (those south of 52.3�N) in Figure 3. The
coherence phase, as a function of period, is shown for each
season. For every season observed there is coherence at
>98% confidence level for some range of cycle periods.
This coherence has phase near ±180�, meaning that clouds
and sulfate are anticorrelated. The oscillatory periods that
exhibit anticorrelation are large but variable, ranging from
8–64 days. Note that a given period includes both a peak
and a trough, so that an 8 day period would consist of 4 days
of peak sulfate/reduced cloud cover and 4 days of low
sulfate/peaked cloud cover. There is a slight preference for

coherence phases in the range �135� to �180�, which
indicates a tendency for cycle-maxima in sulfate (and
minima) to suffer a slight delay relative to cycle-minima
in cloud cover (and maxima).
[18] Coherence is not as strong or as consistent for

Scandinavia, represented by the 10 sites to the north of
52�N (Figure 4), but does exceed the 98% confidence level
in 8 of the 12 seasons. In some seasons there is a trend from
positive correlation at shorter periods (4–8 days) to nega-
tive correlation at longer periods (e.g., in summer 1989,
autumn 1990 and autumn 1991). These trends are consistent
with anticorrelation with a 2–4-day delay in the sulfate
cycle, relative to cloud cover. Alternatively, peaks in aggre-
gate coherence near T = 16-day cycle period and f = �90�
for summer 1989, spring 1990, and autumn 1990, could be
interpreted as a negative correlation between clouds and the
first derivative of sulfate, that is, a correlation between
clouds and sulfate removal. Weak positive correlation
between clouds and sulfate is evident intermittently at short
period in Figure 4, and may result from low-level non-
precipitating clouds which are more prevalent at high
latitudes; these clouds would generate sulfate but not
scavenge it. This is speculative, however, since aggregate
positive coherence at short period does not exceed the 98%
confidence level in any season.

Figure 7. Scatterplot of cloud cover versus(log) sulfate concentration (mg S m�3) for Europe and
Scandinavia, distinguishing between days with (top) and without (bottom) precipitation. Superposed is a
curve showing the median.
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[19] The coherences from the North American data
(Figure 5) exhibit negative correlation at 8–64-day period
for most of the year, with greatest statistical significance in
fall 1989.
[20] The anticorrelation between clouds and sulfate is due

at least in part to the precipitation scavenging of sulfate.
Figure 6 shows coherence between cloud cover and sulfate
in precipitation (deposition) at the European stations. Sig-
nificant positive correlation is observed for most of the
seasons, again typically at cycle periods of 8–64 days.
Coherence between clouds and precipitation (not shown)
looks very similar to Figure 6. Indeed, coherence between
precipitation and sulfate deposition (also not shown) is very
strongly significant and positive at all timescales. One
would expect this because precipitation always results in
some amount of sulfate deposition.
[21] We use the precipitation information to distinguish

between days when scavenging was active and days when
clouds were present but not depleting sulfate. By looking
only at days without precipitation, a positive correlation
between cloud cover and sulfate would show evidence of
cloud production. By dividing our data into days with

and without precipitation, we fragment our continuous
time series and cannot estimate coherence as a function
of cycle period. However we may examine scatterplots of
cloud cover and sulfate air concentration to see whether
days with higher cloud cover correspond to days with
more sulfate (i.e., aqueous-phase sulfate production).
There is considerable scatter in the daily data (Figure 7),
so we compute a running estimate of the median cloud
cover in narrow intervals of sulfate concentration. Median
cloud cover in Europe decreases with increasing sulfate
concentration, whether the clouds are precipitating or not.
In Scandinavia there is no trend in the median cloud
cover for either type of cloud. It is possible that an
analysis sensitive to the presence of thick tall clouds with
high liquid water content might reveal a positive trend,
since such clouds may generate more sulfate. However
our analysis, which is most sensitive to thin, aerially
extensive clouds, detects no increase in sulfate with cloud
cover.
[22] We find that in general, sulfate and clouds are

negatively correlated. In the data sets we examine, coher-
ence is most significant in Europe. The negative correlation
indicates that when clouds are prevalent, sulfate is not, and
vice versa; and that therefore clouds may (1) play a greater
role in scavenging sulfate than producing it, and/or (2) may
inhibit, rather than enhance, the main oxidation pathway for
sulfate production in the atmosphere. A slight bias in
coherence phases between �90� and �180� supports this
interpretation, as it indicates that positive (negative) fluctu-
ations in cloud cover tend to precede negative (positive)

Table 1. Global Annual Sulfur Budgets

Standard Chem CLD Budget

SO2
Sources, Tg S yr�1

Emissions 70.8 70.8 70.8
Photochem 9.9 9.9 9.9

Sinks, Tg S/yr
Dry deposition �34.8 �35.5 �34.7
Wet deposition �1.0 �1.0 �1.0
Gas phase �13.1 �11.6 �11.3
Aqueous phase �31.7 �32.6 �33.6

Burden, Tg S 0.63 0.66 0.64
Lifetime, days 2.9 3.0 2.9

Total Sulfate
Sources, Tg S yr�1

Industrial emissions 1.9 1.9 1.9
Gas phase 13.1 11.6 11.3
Aqueous phase 31.7 32.6 33.6

Sinks, Tg S yr�1

Dry deposition �5.7 �5.8 �3.2
Wet deposition �41.1 �40.4 �43.7

Burden, Tg S 0.72 0.71 0.54
Lifetime, days 5.6 5.6 4.2

Sulfate From Gas-Phase Production
Sources, Tg S yr�1

Gas phase 13.1 11.6 11.3
Sinks, Tg S yr�1

Dry deposition �0.4 �0.4 �0.3
Wet deposition �12.8 �11.2 �11.0

Burden, Tg S 0.41 0.39 0.36
Lifetime, days 11.3 12.2 11.7

Sulfate From Aqueous-Phase Production
Sources, Tg S yr�1

Industrial emissionsa 1.9 1.9 1.9
Aqueous phase 31.7 32.6 33.6

Sinks, Tg S yr�1

Dry deposition �5.3 �5.4 �2.9
Wet deposition �28.3 �29.2 �32.7

Burden, Tg S 0.31 0.32 0.17
Lifetime, days 3.4 3.4 1.7

aThe particulate sulfate emission is arbitrarily added to the aqueous
emission.

Figure 8. Model sulfate burden as a function of month for
the standard run (solid) and the cloud chemistry budget run
(dashed). Upper is total sulfate, lower shows the aqueous
and gas-phase components.
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fluctuations in sulfate. That is, clouds tend to build up
before precipitating and scavenging sulfate, and/or gas
phase produced (GPP) sulfate builds up following cloud
dissipation.
[23] In the following section we will consider cloud-

sulfate coherence in our global model. We will use the
model to consider the relative contributions of gas and
aqueous sulfate production pathways to the correlation
behavior.

5. Model Experiments

[24] We perform 3 model simulations, using the Goddard
Institute for Space Studies General Circulation Model
(GISS GCM), with online sulfur chemistry. This version
of the model is described by Koch et al. [1999]. The model
has resolution of 4� � 5� and 9 vertical layers. Online
species include DMS, SO2, gas phase produced (GPP)
sulfate, aqueous phase produced (APP) sulfate and H2O2.
Since we are interested in distinguishing between aqueous
(in-cloud) phase and gas-phase sources of sulfate, we have
made these separate species.
[25] The aqueous sulfur chemistry is embedded in the

cloud code, so that dissolution and sulfate production occur
after cloud condensation, the soluble species are scavenged
with autoconversion, they are returned to the grid box
following evaporation, and they are transported along with

air mass flux (e.g., in convective updrafts and downdrafts).
Beneath precipitating clouds, gases and aerosols are scav-
enged by falling raindrops; sulfate production may also
occur within these droplets. (In these simulations we do not
include a sulfate indirect effect.) Aqueous-phase sulfate
production is achieved by oxidation of SO2 with H2O2.
We use a semiprognostic treatment of H2O2, using off-line
HO2, OH and photolysis rate to generate and destroy H2O2.
This allows the oxidant to have a budget that may be
depleted by sulfate generation and cloud processing. Gas-
phase sulfate production occurs by oxidation of SO2 with
(off-line) OH.
[26] The emissions include anthropogenic fossil fuel and

biomass burning SO2, natural DMS and steady volcanic
SO2 [see Koch et al., 1999]. For the coherence calculations,
we save daily average sulfate surface concentrations and
cloud cover at each grid box shown in the hatched regions
of Figure 1.

6. Standard Model

[27] Our initial simulation is identical to the simulation
described by Koch et al. [1999], except that we carry
separate GPP and APP sulfate species. It is of interest to
compare the budgets of these 2 pathways, shown in the first
column of Table 1. Although most of the sulfate is gener-
ated in the aqueous phase (about 70%), this component is

Figure 9. Zonal annual mean of the gas-phase produced sulfate, aqueous-produced sulfate, and gas-
phase divided by the total sulfate for the standard run (1st column) and the cloud budget run (2nd
column). The concentrations unit is ng m�3. See color version of this figure at back of this issue.
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more efficiently scavenged by the local clouds, so it has a
relatively short lifetime (3.4d on global average) and makes
up only about 43% of total burden. Conversely, the gas-
phase-produced (GPP) sulfate is about 30% of the total
source, but since it is produced in relatively clear condi-
tions, it persists longer (11.3d) and makes up 57% of the
total burden. Barth et al. [2000] also distinguished between
the sulfate oxidation pathways; their result is similar,
however they had higher aqueous-phase production (81%)
and contribution to burden (50–60%).
[28] Figure 8 shows how the sulfate burden and its

2 components vary during the year. The gas-phase contri-
bution is greatest in April–October, when there is the most
sunlight in the NH where the (industrial) emissions are
greatest.
[29] Figure 9 shows the zonal annual mean sulfate pro-

duced in the gas phase, aqueous phase and the ratio of the
GPP sulfate over the total. Gas-phase production is domi-
nant at high altitudes and where convective scavenging
efficiently removes sulfate made in-cloud (i.e., in the
tropical upper troposphere). Figure 10 shows the geographic
distribution of the column burden of sulfate and the fraction
of the column burden derived from gas-phase production.
There is some tendency for aqueous-phase production to be
higher over continents (near source regions) since this
pathway is faster than gas-phase oxidation.

[30] We performed a coherence analysis of model sulfate
and cloud cover, saving diagnostics in the 3 regions of
Figure 1 in a manner like the observations: 24-hour
averages of cloud cover and sulfate concentration in the
lowest model layer. Following a 1-yr model spin-up we
saved daily diagnostics for 3 years. The coherence of total
sulfate and cloud cover in Europe is shown in Figure 11.
There is some significant anticorrelation (e.g., in the spring
and fall of the first year, in the winter and fall of the
second year), but not nearly as strong or as negative as
observed (Figure 3). In Figure 12 we show the coherence
between clouds and the GPP sulfate only. We see that
without the aqueous-phase-produced (APP) sulfate, the
correlation is stronger and more negative, closer to the
observed correlations.
[31] We show model results from Europe only. In Scan-

dinavia and North America the modeled coherence is
weaker than in Europe. The correlation between total sulfate
and cloud cover is more positive (than in Europe); as in
Europe, the correlation becomes more negative if GPP
sulfate is considered in isolation.

7. Potential Impact of Missing
Photochemical Effects

[32] One reason our coherence is too weak in the model
may result from the importing of monthly mean oxidants
from another model, so that the OH and therefore the gas-
phase sulfate production do not increase under clear con-
ditions and decrease under cloudy conditions. If our aerosol
model were fully coupled to a chemistry model then the gas-
phase source of sulfate would diminish beneath a cloud and
presumably generate some negative correlation between the
two.
[33] To test this, we repeated the simulation, setting gas-

phase production of sulfate equal to zero if a cloud is
overhead (‘‘chem run’’). Figure 13 shows that this does
strengthen the negative correlation between cloud cover and
GPP sulfate for Europe (compared with Figure 12). More-
over, the GPP-only coherence exhibits a bias toward phases
f in the range �135� to �180�, similar to the Europe data.
However there is very little change in the coherence
between clouds and total sulfate (not shown), since the
in-cloud production is dominant.
[34] The global budget for this simulation is shown in the

middle column of Table 1. There is little change compared
with the control run.
[35] These first 2 experiments give us a clue that perhaps

gas-phase production should be more important relative to
aqueous-phase production, since the GPP sulfate has the
desired negative correlation but adding the APP sulfate
‘‘washes out’’ the signal.

8. Addition of Dissolved Tracer Budget

[36] Another aspect of the model that has an impact on
the sulfate-cloud relations is the treatment of dissolution and
aqueous sulfate production. Sulfate generated within a cloud
should either rain out of the cloud or be released from the
cloud when the cloud evaporates. This model, like other
global sulfur models, releases its APP sulfate from the cloud
following each (cloud) time step whether the cloud evapo-

Figure 10. Annual average column burden of (total)
sulfate (mg m�2) at top. Below is the fraction derived from
gas-phase production. See color version of this figure at
back of this issue.
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rates or not. This allows some of the sulfate to escape into
the cloud-free region of the box instead of remaining in the
cloud where it more likely to be rained out.
[37] To correct this, we repeated the (‘‘chem’’) simula-

tion, this time retaining APP sulfate for the duration of the
cloud lifetime and releasing it into the cloudless portion of
the box only if the cloud evaporates. As a result, the APP
sulfate, now trapped in the cloud droplets, is more likely to
be scavenged. As shown in Table 1 (column 3), this causes
the APP burden and lifetime to drop to about 1/2 of their
values in the standard simulation; the total sulfate burden
drops by 25%. The decrease in the APP sulfate occurs
throughout the troposphere (Figure 9) and, conversely, the
increase in fractional amount of GPP sulfate occurs
throughout the troposphere (comparing the bottom 2 panels).
Figure 8 shows that the reduction in APP sulfate occurs
throughout the year.
[38] Figure 14 shows that this simulation produces sig-

nificant negative coherence between cloud cover and total
sulfate over Europe for most of the seasons simulated, much
more than in the standard simulation (Figure 11). The
improvement was similar in North America, but less in

Scandinavia (where the APP sulfate is perhaps still too
dominating). The cycle period of coherence is long, as in
the observations.
[39] Since the coherence in this simulation was most like

the observations, we performed further GCM simulations to
investigate the timescale and vertical extent of the cloud
impact on sulfate. To test whether coherence at shorter
timescales would appear if our time series was saved at
smaller time steps, we saved hourly diagnostics; there was
still no significant short period coherence. We also saved
(for one year) the daily total sulfate produced and scavenged
by the clouds, in order to compare with the observations and
to see if a shorter timescale correlation appeared. These
coherences are shown (for Europe) in Figure 15. The
correlations for both are significant and positive. The
coherence between clouds and sulfate deposition is stronger
in the model than the observations (Figure 6) and is
significant at shorter periods than observed, though the
most significant correlation is at the longer periods. The
stronger model coherence may be due to the tendency for
the model clouds to drizzle more frequently than observed.
Similar to the total sulfate, daily sulfate produced in clouds

Figure 11. Coherence of modeled total sulfate and cloud cover in Europe, plotted for each season of
3 years. See Figure 3 for details. On the log-period axis, 3, 4, 5, and 6 correspond to oscillation periods of
8, 16, 32 and 64 days, respectively. The bars indicate our ‘‘detection level’’ for stacked coherence,
estimated to be at least the 98% confidence level for nonrandomness.
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correlates with clouds on a relatively long timescale. We
will continue the discussion of timescale in the following
section.
[40] Finally, we tested whether layer 1 sulfate concen-

trations are representative of the sulfate at higher levels in
the model, where the clouds typically reside. To investigate
this we saved the sulfate in layers 1, 2, 3 and 4 (layer 4 is at
635 mbar) for one model year. We found a very strong
positive coherence between layers 1 and layers 2–4. Also
the coherence between clouds and layers 2 and 3 is very
similar to the coherence with layer 1 although it is not quite
as strong. The slightly stronger coherence with layer 1 may
result from the effects of below cloud scavenging and/or
inhibition of gas-phase sulfate production below clouds,
which would be greatest in the lowest layer.
[41] Although the model coherence (Figure 14) is now

similar to the observed coherence (Figure 3), it is still not as
strong. In the following section we consider some further
possible means to strengthen the model coherence.

9. Discussion and Conclusions

[42] We have examined 3 years of daily (ISCCP) cloud
cover and sulfate surface concentration observations and
shown that these have a persistent negative correlation in
Europe and North America. This result suggests that clouds

inhibit sulfate production more than they enhance it via
in-cloud production. The inhibition results from a combina-
tion of precipitation scavenging of sulfate and the reduction
of gas-phase production (GPP) below clouds. Our model
simulation indicated that negative correlation is characteristic
of cloud-GPP sulfate relations. Indeed the model simulations
improved (i.e., showed greater anticorrelation between
clouds and sulfate) when we made changes that decreased
in-cloud production relative to gas-phase production.
[43] We attempted to seek evidence of in-cloud sulfate

production in the data by looking for a positive trend
between sulfate amount and cloud cover in clouds that are
nonprecipitating. Such a trend was either lacking or nega-
tive, depending upon the region. Thus we saw little evi-
dence of in-cloud production and conclude that its role is
minor compared with the other cloud influences on sulfate.
We note however that our analysis may not be best suited
for detecting APP sulfate. This is because the most APP
sulfate may be generated by clouds which are thick,
columnar and having high cloud liquid water content and
since these are generally less aerially extensive they may
not be associated with large cloud cover. Our analysis is
more sensitive to thinner, less productive but aerially
extensive clouds.
[44] The timescales of coherence were fairly long, typi-

cally 8–64 days. These timescales appeared also in coher-

Figure 12. As in Figure 11 but for sulfate from gas-phase production only.
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ence between cloud cover and sulfate deposition. The long
timescales probably result from the fact that the sulfate
concentration in a given location is influenced by the
integration of cloud effects over a broad surrounding region,
which translates into a lengthening of timescale. Further-
more, the sulfate responds to the cloud systems which in
turn are influenced by various intramonthly modes (e.g.,
blocking episodes, index cycle, regional midlatitude wave
trains; Lanzante [1990]; Schubert [1985]). While a given
sulfate particle has a relatively short lifetime (on the scale of
days to a few weeks), the sulfate concentration level is
maintained or depleted by the ongoing production and
removal mechanisms, many of which are cloud-related.
The slow shifting from cloudy to clear conditions and the
responses of the sulfate concentration and deposition are
illustrated in the sample time series shown in Figure 2. Finer
time-scale correlations (including evidence of in-cloud
production) might appear if one were to observe sulfate in
and around a single cloud over the course of its lifetime. On
the larger time and spatial scales of our observations,
however, only anticorrelation is preserved.
[45] Our regions of study, those with daily sulfate surface

concentration measurements, were primarily located near
large anthropogenic source regions. The anticorrelation
result was strongest in Europe, where we also had the most

data. In Scandinavia and in the U.S., the coherence was
weaker. In Scandinavia this may be a combination of higher
in-cloud production and lower gas-phase production (due to
the higher latitude). Since the North American data set is
only for one year it is difficult to speculate about ‘‘typical’’
behavior there. In other regions, more remote from anthro-
pogenic sources, the correlation behavior could be different.
We attempted to look at data from some oceanic stations
(e.g., Izana, Bermuda, Barbados; J. Prospero, private com-
munication, 1997), however the data were too sparse to get
a significant result.
[46] We were able to use the observations to improve our

global sulfur model. Initially the model produced little
significant coherence between sulfate and cloud cover. We
improved it by adding a dissolved sulfate budget, so that
sulfate generated within a cloud is not released from the
cloud unless the cloud evaporates. Hence more sulfate is
rained out and less generated by clouds. The overall sulfate
burden and lifetime are reduced by 25% (to 0.54 Tg S and
4.2d, respectively). This burden is at the low end of other
global sulfate simulations (which range from about 0.50–
0.95 Tg S). The lack of a dissolved species budget is typical
of global aerosol models. Thus we expect that other global
sulfate models would fail to generate the negative correla-
tions between clouds and sulfate which appear in the

Figure 13. As in Figure 11 but for sulfate from gas-phase production only for the simulation without
gas-phase production under clouds.
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Figure 14. As in Figure 11 from the simulation with no gas phase production beneath clouds and
including a dissolved sulfate budget.

Figure 15. Coherence of model cloud cover with daily sulfate deposition (top) and with daily sulfate
produced in-cloud (bottom). Results are from the European region.
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observations. Furthermore, these models probably have
excessive (APP) sulfate generation.
[47] Although the correction of our dissolved species

scheme improved the coherence between clouds and
sulfate, the resulting reduction in the sulfate burden
creates a negative bias between the modeled and observed
surface sulfate concentrations. Our standard model had
very good agreement between model sulfate and obser-
vations at the surface [Koch et al., 1999]. Now the model
is low compared with observations, especially in Europe
(where it was already too low). The average model bias
(model-observations/observations, where the observations
are from Koch et al. [1999]) decreases from �zero to
about ��0.3 in source regions other than Europe; in
Europe it decreases from �0.3 to �0.6. However, the
model has excessive SO2 at the surface, typically double
the observations - more than enough to fix the sulfate
bias. (Our standard model performance, with minimal
sulfate bias but excessive SO2, is typical of many global
sulfur models; Barrie et al. [2001]). Therefore it appears
that another mechanism for oxidizing SO2 is required.
Heterogeneous oxidation on aerosol particle surfaces,
such as SO2 oxidation by ozone on dust [e.g., Usher et
al., 2002] is a likely candidate: this would increase
sulfate production, decrease SO{2}, and since it would
be most active in clear conditions it would enhance the
negative sulfate-cloud correlations.
[48] Our study suggests that models ought to be pro-

ducing more sulfate in clear conditions and less in cloudy
conditions. This correction is likely to have implications
for the indirect radiative forcing effect, since lower sulfate
production near clouds should reduce the impact that
sulfate can have on clouds. In order to test this, we
repeated our standard and ‘‘cloud budget’’ simulations
and included a simple parameterized relation between
sulfate and cloud droplet number, similar to what was
used by Menon et al. [2002] (but for sulfate only).
The indirect (anthropogenic) radiative forcing decreased
only slightly: it was �1.7 W m�2 for the standard case
and �1.5 W m�2 for the simulation with the cloud
budget. The impact on the direct anthropogenic radiative
forcing is approximately proportional to the reduction in
sulfate burden: the forcing decreases from �0.66 to
�0.47 W m�2 for the standard and cloud-budget simu-
lations, respectively. We note that including the (first)
indirect effect in the simulations does not greatly affect
the cloud-sulfate correlations. The second effect (where
sulfate amount increases cloud lifetime) might, though it
is likely to increase positive correlation rather than
negative correlation.
[49] In addition to putting in a dissolved sulfate budget,

we were also able to improve the cloud-sulfate anticorre-
lation by not allowing gas-phase sulfate production
underneath clouds. Since our model imports its oxidants
from another model, these off-line fields were affected by
a different model’s clouds. We tested the impact of this
by setting the gas-phase production of sulfate equal to
zero if a cloud was overhead. We found that this did
strengthen the negative correlation between GPP sulfate
and cloud cover. (However this improvement did not
affect the correlation between clouds and total sulfate
unless the dissolved budget decreased the aqueous-phase

production relative to the gas-phase production.) Coupling
the sulfate model to a full global chemistry model may
further improve the anticorrelation. Since the aqueous-
phase oxidant H2O2 is also affected by photochemistry
(due to its photolysis, relation to OH, etc.), such coupling
may impact the correlations for both phase-production
pathways.
[50] In conclusion, we encourage the use of the observed

anticorrelation between sulfate and clouds as a diagnostic
test for global sulfate models. Furthermore, global aerosol
and chemistry models need to verify that they are handling
dissolution and evaporation correctly: that the dissolved
species are only released from clouds as they evaporate.
Fixing this in our model caused the ratio of the GPP
sulfate burden to APP sulfate burden to increase from 1.3
to 2.
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Figure 9. Zonal annual mean of the gas-phase produced sulfate, aqueous-produced sulfate, and gas-
phase divided by the total sulfate for the standard run (1st column) and the cloud budget run (2nd
column). The concentrations unit is ng m�3.
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Figure 10. Annual average column burden of (total) sulfate (mg m�2) at top. Below is the fraction
derived from gas-phase production.
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